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Abstract: We introduce end-to-end inverse design in which a nanophotonics frontend is
optimized in conjunction with a computational-imaging backend to minimize reconstruc-
tion errors. We present several nanophotonics designs for depth, spectral and polarization
imaging. © 2022 The Author(s)

Nanophotonics inverse design [1] enhances spatial, spectral and polarization sensitivities by leveraging full-
wave Maxwell physics — electromagnetic interactions largely ignored by refractive or diffractive optics. Compu-
tational imaging transcends conventional optics by algorithmic reconstruction of high-fidelity information from
limited optical measurements. We integrate nanophotonics inverse design and computational imaging into a holis-
tic end-to-end [2] framework: a single-piece nanophotonics frontend is optimized in conjunction with an image-
processing backend to minimize reconstruction errors. The optics and computation are tightly coupled because the
gradient of the backend error is propagated through the entire pipeline to the physical parameters of the frontend
nanophotonics. In contrast to optics-only or computation-only designs, the functionality of the frontend optics
is not prescribed a priori but spontaneously emerges during the end-to-end optimization. Unfettered by human
intervention, end-to-end discovery reveals nano-structures with enhanced data-acquisition capabilities and ultra-
compact form factors.

Our end-to-end framework can be described in the most general term as the minimization of a loss funtion
L(ũ,u), over geometrical parameters ε (belonging to the nanophotonics frontend) and hyperparameter(s) α (be-
longing to the computational-imaging backend). Typically, L measures the distance between the (known) ground
truth object u and the reconstructed object ũ. The latter is obtained by solving an inverse-scattering problem:

ũ = argminµ ‖Gµ−v‖2 +R(µ;α), (1)

where v is a raw image, G a measurement matrix, and R a regularization term. Note that the inverse-scattering
problem (Eq. 1) is an auxiliary minimization problem “nested” within the primary problem of minimizing L. A
key feature of our framework is an efficient differentiation of the nested minimization problem via an adjoint
analysis of the associated Karush-Kuhn-Tucker optimality conditions. It is well known that Eq. 1 is typically ill-
posed and an estimate ũ may not be uniquely or stably determined. To facilitate the reconstruction, we incorporate
additional priors (such as stability, smoothness and sparsity) in the form of R=α‖Ψµ‖2 (Tikhonov regularization)
or R = α‖Ψµ‖1 (compressed sensing). Once R is specified, ũ can be obtained by classical iterative algorithms
with provable convergence and correctness. We note that, in contrast to data-driven approaches such as neural
networks, our choice of classical methods to compute ũ naturally prioritizes interpretability, generalizability and
data-efficiency over learning deep data priors. Ultimately, future backends may be realized by new architectures
that combine classical algorithms and deep neural networks.

In Eq. 1, the measurement matrix G models the imaging optics and can be assembled from the electric field
intensities on the CCD sensor in response to a point dipole at each position within the object space. In our image-
formation models, G can vary from convolutional kernels to full dense matrices. In fact, the richness and complex-
ities of G that arise from complex nanophotonics geometries and the underlying Maxwell equation differentiate
our framework from refractive or diffractive optics. In particular, accurate computations of G require detailed
simulations of the nanophotonic geometry ε as well as the gradient ∇ε G using the full Maxwell equation and its
adjoint, taking into account strong spatio-spectral and polarization dispersions.

We present several examples to illustrate the capabilities of our framework. Figure 1a shows a large-area meta-
surface (an aperiodic nanophotonic structure made up of over one million subwavelength pillars) for single-shot
multi-spectral imaging via Tikhonov-regularized reconstruction [3]. The metasurface is initialized as a uniform ar-
ray of pillars with no prescribed functionality. As optimization progresses, a demultiplexing functionality emerges
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Fig. 1. (a) Metasurface spectral imager over the visible spectrum (450-660 nm). The test object
is a multi-spectral image of superimposed letters, each letter emitting a different wavelength. The
letters cannot be distinguished by naked eyes but are readily seen on the monochrome image and
are accurately reconstructed by Tikhonov regularization. (b) Multi-layered polymer nanophotonic
probe for sensing the polarization coherence states of fluorescence particles (up to two particles and
two wavelengths). The loss function and the condition number κ(G) of the measurment matrix are
simultaneously reduced as optimization progresses, rendering the final design ∼ 100× less prone to
noise. (c) Metasurface 2D imager with compressed sensing (CS). The object has 256× 256 pixels
and the sensor has 128×128 pixels — an under-determined reconstruction problem. The end-to-end
inverse design spontaneously configures a multi-focal metalens with 26 foci, which out-performs an
un-optimized random metasurface while matching the “CS-optimal” performance of a (physically
unrealistic) Gaussian matrix.

spontaneously, focusing the different spectral channels to separate domains on the monochrome sensor. Note that
the locations of the domains do not follow any pre-determined pattern (such as an ordered lattice) but are opti-
mally discovered by end-to-end inverse design. Figure 1b shows a topology-optimized volumetric nanophotonic
probe for reconstructing the spatio-spectral polarization states of fluorescent particles up to two particles and two
spectral bands [4]. We found that an end-to-end minimization of the Tikhonov-regularized reconstruction error
simultaneously reduces the condition number κ(G) of the measurement matrix, enabling ∼ 100× reduction in
noise sensitivity. Figure 1c shows the result of an end-to-end compressed-sensing (CS) optimization in the case
of a “small sensor”. The reconstruction problem is under-determined, and the object is assumed to be sparse in
the standard basis. The optimized design leads to ∼ 10× reduction in reconstruction errors compared to a random
metasurface while it elegantly matches the performance of a “CS-optimal” but physically-unrealistic Gaussian
matrix. Building on these examples, we will also present depth imagers, depth-spectral imagers and comprehen-
sive spectro-polarimetric-depth imagers, each of which integrates an ultra-compact single-piece nanophotonics
with an efficient Tikhonov and/or compressed-sensing backend without any additional optics.
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