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Abstract: Traditional optical elements and conventional metasurfaces obey shift-invariance
in the paraxial regime. For imaging systems obeying paraxial shift-invariance, a small shift
in input angle causes a corresponding shift in the sensor image. Shift-invariance has deep
implications for the design and functionality of optical devices, such as the necessity of free
space between components (as in compound objectives made of several curved surfaces). We
present a method for nanophotonic inverse design of compact imaging systems whose resolution
is not constrained by paraxial shift-invariance. Our method is end-to-end, in that it integrates
density-based full-Maxwell topology optimization with a fully iterative elastic-net reconstruction
algorithm. By the design of nanophotonic structures that scatter light in a non-shift-invariant
manner, our optimized nanophotonic imaging system overcomes the limitations of paraxial
shift-invariance, achieving accurate, noise-robust image reconstruction beyond shift-invariant
resolution.

1. Introduction

The design of imaging systems that transcend paraxial shift-invariance is the next step in making
compact, high-resolution imagers. Conventional optical elements, such as thin lenses [1], obey
the property of paraxial shift-invariance, meaning the best angular resolution they can achieve is
Δ𝜃 ∼ Δ𝑥𝐷/𝑑, where 𝑑 is the distance between the optical element and the sensor and Δ𝑥𝐷 is the
width of a detector pixel on the sensor (Fig 1a, left and right). Traditional metasurfaces relying
on pre-computed paraxial phase libraries [2–7] are also constrained by the same limitation. Here,
we present a method for the design of freeform nanophotonic optical elements that overcome such
constraints on angular resolution. We demonstrate our method to design two-dimensional (2D)
and three-dimensional (3D) freeform nanophotonic structures for angle-resolved spectrometry
at angular resolutions beyond what is allowed by the paraxial limit. We design our freeform
nanophotonic structures through topology optimization [8–10] in an end-to-end [11–16] pipeline
(Fig. 1(d)), which directly minimizes the ultimate reconstruction error. In our approach, freeform
nanophotonic geometries are parametrized by dielectric permittivity 𝜀 at every pixel in a design
region, amounting to tens of thousands of optimization parameters. We show that our optimized
structures outperform both a conventional thin lens (which obeys paraxial shift-invariance) and
random nanophotonic structures (which are not beholden to the same limit).

Previously, the challenge of transcending paraxial shift-invariance has been addressed with
super-cell metasurfaces [17] and nonlocal optics [2,18–20], in the context of “space squeezing" –
compression of free space by designed nanophotonic structures. For a given detector pixel size
Δ𝑥𝐷 in traditional optical elements, the paraxial shift-invariance limit dictates the distance 𝑑

between the optical element and sensor required to capture images at a given spatial resolution
Δ𝜃, where higher resolutions with Δ𝜃 < Δ𝑥𝐷/𝑑 cannot be captured by an imaging system



Fig. 1. Transcending shift-invariance with end-to-end optimized freeform meta-
surfaces. (a) Left (resp. Right): Image formation with a conventional thin lens at
normal (resp. oblique) incidence. The two angles are not resolved. (b) Left (resp.
Right): Image formation with a designed nonlocal nanophotonic optical element at
normal (resp. oblique) incidence. The two angles are resolved. (c) Left (resp. Right):
Image formation in an end-to-end nanophotonic pipeline at normal (resp. oblique)
incidence. The two angles are resolved with computational processing. (d) The
end-to-end design pipeline presented in this work. From left to right: the ground truth
emits polychromatic light scattered through a nanophotonic structure and measured on
a grayscale sensor. The signal on the sensor is then fed to a reconstruction algorithm
with hyperparameters 𝑝, which outputs a reconstruction of the original signal. During
training, a reconstruction error 𝐿 (𝜀, 𝑝) is computed as a function of the nanophotonic
structure permittivity profile 𝜀 and the reconstruction hyperparameters 𝑝. To design the
structure 𝜀, gradients 𝜕𝐿/𝜕𝜀 are backpropagated back to the nanophotonic structure. To
tune the hyperparameters 𝑝, gradients 𝜕𝐿/𝜕𝑝 are propagated back to the reconstruction
algorithm.

with a conventional thin lens (Fig. 1(a)). Minimizing free space in imaging systems, or “space
squeezing," is part of a broader effort to reduce the volume of imaging systems [21–23]. Prior
work seeks to minimize the volume of both the optical element [3–6] and free-space [2, 18]
separately, and typically involves two engineered structures: a local metasurface to replace the lens
and a nonlocal structure to replace free space (e.g. a multi-layer stack acting as a space squeezer).
This two-structure system is necessary because traditional metasurfaces are characterized by local
transfer functions while replacing free space requires a nonlocal (momentum-dependent) transfer
function [2]. Nonlocal optimized metasurfaces can resolve angles within the paraxial regime, as
shown in Fig. 1(b). Our method, shown in Fig. 1(c), offers a more compact alternative to space
squeezing by designing a single thin engineered nanophotonic structure which, in conjunction
with a computational-imaging algorithm, replaces both the lens and free space, rather than one for
each. Unlike prior approaches that separate the two problems (lens and free space), our approach
combines them into a single end-to-end image-reconstruction problem.

In addition to the nanophotonic structure design, a robust computational reconstruction
component is essential to imaging beyond the paraxial limit. Prior work realized compact
imagers in inverse-designed optics-only systems [24]. Such techniques rely on the optimization
of many degrees of freedom (typically distributed over an entire optimization volume) to realize
a pre-defined optical functionality. In contrast, our work leverages recent developments in
end-to-end inverse-design: harnessing computational reconstruction to loosen constraints on the
transformation imparted by the optimized optical elements. We achieve this by resolving images
and patterns that would be unreadable to the human eye (and could not be pre-defined by the
user as an optimization task). This allows for the design of thinner, less complex nanophotonic



structures that need only to produce an image interpretable by the reconstruction algorithm. In
previous work in end-to-end optimization, nanophotonic structures have been paired with various
image reconstruction algorithms, including neural networks, compressed sensing (or Lasso-
regularized regression), Tikhonov-regularized regression, and elastic-net regression [25–29].
In our work, we use the elastic-net reconstruction algorithm, which combines the Lasso (𝑙1)
regularization term and the Tikhonov (𝑙2) regularization term. Intuitively, the 𝑙1 term encourages
the regression to deliver a sparse solution, which is of particular interest to us in the detection of
angle and frequency of incoming laser beams under the often reasonable assumption of there
coming only a few beams at a time. We give the reconstruction algorithm flexibility to choose
whether to emphasize the Lasso or Tikhonov regularization terms by optimizing the elastic-net
hyperparameters [30]; we show that a sparse problem generally results in the optimization
greatly emphasizing the Lasso term and de-emphasizing the Tikhonov term. Our reconstruction
algorithm is paired with the topology-optimized structure, allowing for the automated discovery
of both freeform designs and reconstruction hyperparameters.

2. End-to-end optimization pipeline

2.1. Image formation

We consider polychromatic and spatially-extended objects, therefore describing the ground-
truth as a multi-dimensional tensor with at most 4 dimensions (3D space + 1D spectral). For
convenience, we represent this tensor as a flattened single vector u where each component
corresponds to a unique angle-frequency pair (𝜃, 𝜆). We propagate the ground truth object
through our nanophotonic structure and free space to generate a raw, noisy, grayscale image at
the detector v, where

v = 𝐺 (𝜀(r)) u + 𝜂. (1)

In the above expression, 𝜀(r) is the dielectric profile of the nanophotonic structure, 𝐺 (𝜀(r))
is the measurement matrix of the imaging system (a function of 𝜀(r)), and 𝜂 is the additive
Gaussian noise, whose standard deviation is proportional to the average intensity on the detector.
The degrees of freedom of the structure 𝜀(r) are free to take on arbitrary designs through the
optimization, and, in particular, we do not assume that 𝐺 should result in a shift-invariant
point-spread function (PSF). By selecting proper physical constraints for optimization (e.g.
choosing incident angles to be close together), the design of structures that transcend shift-
invariance follows naturally. This is key for allowing our system to differentiate between
angles in the paraxial regime. We emphasize that such differentiation is not possible under the
assumption of shift-invariance, which is commonly used as a computational simplification [1], as
is shown in Fig. 1(a,b). We numerically compute the measurement matrix 𝐺 from 𝜀(r) using the
finite-difference time-domain (FDTD) method [31].

2.2. Parameter estimation

Our pipeline is made up of a nanophotonic structure and a reconstruction algorithm. First, the
electric fields generated on the detector by the ground truth object u are calculated with the image
formation process, as described in the previous section. The result of that first step is the raw,
noisy vector of intensities v. We feed this vector into the computational reconstruction algorithm.
The computational reconstruction algorithm uses elastic-net regression to reconstruct an object
uest. Elastic-net regression is a form of linear regression with both a Lasso (𝑙1) and a Tikhonov
(𝑙2) regularization term. Mathematically, the reconstruction problem amounts to solving the
following optimization problem:

uest = arg min
u

(
∥v − 𝐺 (𝜀(r))u∥2

2 + 𝛼2 ∥u∥2
2 + 𝛼1 ∥u∥1

)
, (2)



where 𝛼1 and 𝛼2 are the reconstruction hyperparameters. 𝛼1 controls the magnitude of the
Lasso (𝑙1) regularization term, which selects for sparsity. 𝛼1 controls the magnitude of the
Tikhonov (𝑙2) regularization term, which selects for a noise-robust solution. Our end-to-end
optimization task is to find values for 𝜀(r), 𝛼1, and 𝛼2 that minimize the normalized reconstruction
error averaged over the training set and corresponding image noise

𝐿 (uest, u) =
〈
∥u − uest∥2

2

∥u∥2
2

〉
u,𝜂

.

Our end-to-end optimization task to computationally design an imaging system can therefore be
written mathematically as:

𝜀(r) (opt) , 𝛼 (opt)
1 , 𝛼

(opt)
2 = arg min

𝜀 (r) ,𝛼1 ,𝛼2

𝐿 (u, uest). (3)

To perform optimization in the end-to-end framework, we need to compute gradients for the
loss 𝐿 with respect to the parameters 𝜀(r), 𝛼1, and 𝛼2. Gradients are back-propagated through
the elastic-net reconstruction algorithm by finding the derivatives of the Karush-Kuhn-Tucker
conditions [11], whereas back-propagation through the FDTD simulation is performed via an
adjoint simulation. The adjoint simulation is run as a second FDTD [31] simulation following the
initial “forward-pass" simulation. The adjoint sources are computed based on the back-propagated
gradient vector from the reconstructed solution [32]. We then run FDTD using these adjoint
sources and integrate the resulting fields with our forward-pass fields to obtain the overall
gradient. We train our end-to-end system in a two-step process: first, we use the method of
moving asymptotes (MMA) [33, 34] on a fixed training set for topology optimization of the
nanophotonic structure 𝜀(r); then, we use Adam optimization [35] on data randomly generated
each iteration to tune the reconstruction hyperparameters 𝛼1 and 𝛼2. For both MMA and Adam,
we run the optimization until convergence; in practice, this occurred with a few hundred iterations
of MMA and about 100 iterations of Adam. We benchmark our optimized designs against
randomly initialized designs and thin lens designs by optimizing 𝛼1 and 𝛼2 for each design and
comparing the optimized loss 𝐿. Because we randomly generate new data for each iteration of
Adam, the training loss serves also as validation loss. To implement material binarization, we
gradually turn on a binary filter for the structure (in practice, a tanh function) over the course
of optimization. We begin optimization without a filter. After approximately fifty iterations of
MMA, we start to filter the values of 𝜀 by the tanh function. Every approximately fifty iterations
following, we turn up the sharpness of the filter, until the structure is binary.

Because the optimization is over such a large design space and the problem is generally
non-convex, we expect the optimization to converge to local optima. Sometimes, edge cases of
converging to local optima may be experienced where, for instance, the optimization converges
to a structure that blocks all the light from the detector. To avoid these, we run our optimization
several times from different initial starting conditions (uniform, random, random with Gaussian
filter). For non-edge cases of convergence, however, the size of the design space means that the
local optima we find generally perform very well for the task.

3. Results

We showcase our end-to-end pipeline in three types of reconstruction problems where, in order
to accurately reconstruct the ground truth, we need finer angular resolution than what can be
offered by paraxial optics. In all three reconstruction problems, we show angular resolutions that,
in a paraxial system, would conventionally require over 20 times the separation we use between
the lens and sensor (𝑑), observing the measurement matrices breaking shift-invariance to resolve
angles in the paraxial regime. In the overdetermined case, we also refer to this effect as “space



squeezing." We define the “compression ratio" as the factor by which we reduce the separation
between the lens and sensor from the minimum required in paraxial imaging. In the first
reconstruction problem (Fig. 2), we solve the 2D “sparse sensing" problem: an underdetermined
inverse problem in two dimensions with a sparse prior, which means we assume there are far fewer
nonzero elements in the ground truth than the total possible size of the ground truth; for instance,
we may be detecting the angle and frequency of incoming laser beams, with the assumption that
there are a relatively few number of incoming beams at any given time. The flexibility of our
elastic-net reconstruction along with the requirement of sparsity allows us to accurately recover
the ground truth signal. Over the course of optimization, our reconstruction algorithm settles into
the compressed sensing limit of elastic-net, increasing the 𝑙1 (Lasso) normalization coefficient
and shrinking the 𝑙2 (Tikhonov) normalization coefficient. In the second reconstruction problem
(Fig. 3), we solve the 2D space squeezing problem: an overdetermined inverse problem in two
dimensions with no sparsity prior. Here, the image reconstruction algorithm emphasizes the
𝑙2 coefficient instead. In the third reconstruction problem (Fig. 4), we generalize the space
squeezing problem to three dimensions.

Throughout the results, we report condition numbers of the measurement matrix 𝐺 (𝜀(r)),
calculated as ∥𝐺∥2 · ∥𝐺+∥2, where 𝐺+ is the pseudoinverse of 𝐺. Intuitively, a lower condition
number means that the matrix is more robust to noise for reconstruction. Qualitatively, we find
that the most reconstruction improvement for condition numbers that start in the range 102 − 103

and decrease by a factor of 1.5 or more. For our thin lens benchmark, we can likewise model the
optical system linearly as a measurement matrix and compute the condition number of that matrix.
We evaluate our end-to-end imaging by root mean square error (RMSE) and structural similarity
index measure (SSIM) [36] between ground truth and reconstructed signal. We calculate RMSE
by the equation 〈

∥u − uest∥2
2

∥u∥2
2

〉
u,𝜂

,

where u is the ground truth and uest is the reconstructed signal.
We perform the 2D optimizations with 240 CPUs over the span of 2 to 3 days, and we perform

the 3D optimizations with 480 CPUs over the span of 3 to 4 days. During topology optimization,
we optimize the value of 𝜖 (r) continuously at each pixel, gradually turning on a binary filter over
the course of optimization. For the 2D problems, we also gradually turn on a Gaussian filter to
increase the feature size of the nanophotonic structure.

3.1. Two-dimensional sparse spectral-angular sensing

In this example, we show how end-to-end optimization can be used to reconstruct the spectrum
and angle of incidence of an object beyond the paraxial limit for sparse ground-truth objects.
Sparse sensing has application to laser awareness, enabling the simultaneous sensing of a small
number of distinct signals from different directions and frequencies. The ground-truth object has
dimensions 10 angles × 3 frequencies, making the vector representation of the ground-truth u a
30-component vector. The angles are uniformly spaced between −0.04 radians and 0.04 radians
from normal incidence, such that the nonzero angles for each ground-truth u are drawn from this
particular set of 10 angles. The frequencies correspond to red (672 nm), green (560 nm), and blue
light (448 nm). Each detector pixel has length 𝑥𝐷 = 3.36 𝜇m. We set the sensor 𝑑 = 11.2 𝜇m
from the structure. In the sparse sensing problem, we optimize the nanophotonic structure in
a 78 𝜇m × 1 𝜇m design region. We first demonstrate our method in a 2D setting. Here we
use a sensor with 20 detector pixels, which is 2/3 times the total number of parameters to be
reconstructed. From the specifications above, this makes the entire sensor 67.2 𝜇m long. We
give our nanophotonic structure a design region of size 78 𝜇m × 1 𝜇m (Fig. 2(a)), with 1296



Fig. 2. Sparse, underdetermined angle-resolved spectrometry. (a) The optimized
78 𝜇m × 1 𝜇m volumetric nanophotonic structure, represented as a binary heatmap of
𝜀(r), with zoom-ins on two regions of the structure. There are 1296 design degrees of
freedom per 1 𝜇m2. In the final optimized structure, 𝜀(r) takes on permittivities of only 1
and 12. (b, c) Measurement matrix 𝐺 (b) before and (c) after optimization, with detector
pixel position on the 𝑦-axis and incoming angle and color on the 𝑥-axis. (d) Evolution
of the 𝑙1 (Lasso) and 𝑙2 (Tikhonov) regularization coefficients over optimization. (e)
Convergence of the reconstruction error during end-to-end optimization (blue) compared
to convergence of the reconstruction error during reconstruction-only optimization
with a random structure (orange) and convergence of the reconstruction error during
reconstruction-only optimization with a thin lens (green). (f) Grayscale images formed
from the ground truths in Fig. 2(g) on the detector with 1% noise. (g) Sparse ground
truth signal of 2 activated elements out of a total of 10 angle× 3 frequency possibilities,
overlaid with reconstructed sparse signal from the image in Fig. 2(f).

degrees of freedom per 1 𝜇m2.
We initialize the nanophotonic structure as a random binary structure. This results in the

measurement matrix shown in Fig. 2(b). The measurement matrix is constructed by propagating
monochromatic plane waves that span the length of the nanophotonic structure and measuring
the result on the sensor for each plane wave. The measurement matrix is then indexed by sensor
pixel along the rows and by incoming angle and frequencies along the columns. The vertical red
lines separate the matrix into sections by incoming plane wave frequency; within each section,
the incoming angles range over all 10 angles. Because the sensor is smaller than the structure
and therefore smaller than the full span of the incoming plane waves, the entire sensor initially
detects near-constant low intensity over all incoming angles and frequencies.

After optimization, using the procedure described in the previous section, the measurement
matrix is shown in Fig. 2(c) and the optimized structure in Fig. 2(a). Qualitatively, the optimized
matrix has less correlation between adjacent pixels than the initial measurement matrix, which
matches findings that matrices with independent random pixels are well-suited for compressed
sensing problems [37]. The sensitivity (or robustness) of the reconstruction to environmental
noise can be characterized using the condition number of the measurement matrix, defined as the
ratio of maximal to minimal singular value. Quantitatively, over the course of the optimization,
the condition number of the measurement matrix decreases from 2431 to 1514, and the optical
transmission increases from 0.21 to 0.27 (Table 1). We note that the columns of the optimized
measurement matrix (Fig. 2(c)) differ substantially from each other, meaning the imaging system
is not shift-invariant in the angles. This property is key for accurately resolving adjacent angles
in the paraxial regime. By comparison, the columns for the measurement matrix of a thin



lens are the same across different incoming angles. Meanwhile, on the reconstruction side,
the optimization emphasizes the 𝑙1 regularization coefficient while making the 𝑙2 coefficient
shrink to a negligible value, nearly five orders of magnitude under the 𝑙1 coefficient (Fig. 2(d)).
Here, the presence of the 𝑙2 regularization term improves convergence in the early iterations of
reconstruction hyperparameter optimization even though it is eventually set to nearly zero, as
observed in [11]. Altogether, by giving the end-to-end optimization an underdetermined sparse
problem, the optimization computationally settles on both Lasso regression and a nanophotonic
structure that leads to a randomized measurement matrix, conditions consistent with existing
compressed sensing literature. We emphasize that we specified neither of those conditions as
explicit goals of our optimization.

Overall, the optimized system takes in the input signal from a sparse, multichromatic ground
truth, forming a noisy, randomized, grayscale image (Fig. 2f), and accurately recovering the
ground truth by solving the compressed sensing problem with Lasso regression (Fig. 2g). The
optimized end-to-end system accurately recovers incoming sparse signals under 1% sensor noise
with RMSE 0.14, a significant improvement over a random structure (RMSE 0.22) and a thin
lens focusing to the detector (RMSE 0.43) (Fig. 2e).

From the parameters described previously, the interval between adjacent angles is Δ𝜃 = 𝜋
360 .

This puts us well beyond the paraxial limit, as tan (Δ𝜃) ≈ 0.0087 < 0.30 =
𝑥𝐷
𝑑

. In terms of space
squeezing, this gives us an effective compression ratio 𝑥𝐷/𝑑

tan(Δ𝜃 ) of 34.5 over an angular bandwidth
of 0.08 radians and a spectral bandwidth of 2.2 · 1014 Hz. For a comparison of angular and
spectral ranges, see Table 2. Because we are beyond the paraxial limit, this is a situation where
a traditional lens would do poorly—in particular, multiple adjacent angles often give the same
reading on the sensor with a traditional lens, illustrated in Fig. 1.

3.2. Two-dimensional polychromatic space squeezing

This second reconstruction problem shares many of the same design parameters as the other
two-dimensional problem described in section 3.1 (same ground-truth vector dimensions, angle
range, frequencies, and detector parameters). However, in the case of general-purpose space
squeezing, one cannot a priori assume sparsity of the ground truth image.

We therefore demonstrate our method in an overdetermined system without the sparse prior.
Here we activate all 30 components of the 10 angles × 3 frequencies ground-truth object. We use
a sensor with 50 pixels, so our reconstruction algorithm is solving an overdetermined regression
problem. From the specifications, the overall sensor is then 168 𝜇m long. Our nanophotonic
design region is extended to 134 𝜇m× 1 𝜇m to better match the sensor size (Fig. 3(a)), again with
1296 degrees of freedom per 1 𝜇m2. . We again initialize the nanophotonic structure as a random
structure, leading to the measurement matrix Fig. 3(b) and the structure depicted in Fig. 3(a).
After optimization, the measurement matrix increases significantly in maximum intensity and
is no longer shift-invariant (Fig. 3(b,c)). Quantitatively, over the optimization, the condition
number decreases from 499 to 166, and the transmission increases from 0.20 to 0.53 (Table 1,
Fig. 3(h)). Here sparsity is not enforced in the ground-truth, so the regularization coefficients no
longer emphasize the 𝑙1 term in the hyperparameter tuning (Fig. 3(d)). An example ground truth,
noisy grayscale image, and reconstructed signal are shown in Fig. 3(f,g). The optimized system
has structural similarity index measure, or SSIM, 0.86 and RMSE 0.10 at 1% Gaussian image
noise, a significant improvement over a random structure (SSIM 0.64, RMSE 0.18) and a lens
(SSIM 0.42, RMSE 0.25).

To go from the sparse underdetermined problem to the general overdetermined problem, we
only had to change the physical conditions of the pipeline. In particular, we made no changes
to the initial reconstruction hyperparameters, with the optimization automatically choosing to
emphasize the 𝑙1 regularization term and reduce the 𝑙2 term to nearly zero, the opposite of
what we had previously observed in Fig. 2(d). The flexibility of elastic-net and end-to-end



Fig. 3. General angle-resolved spectrometry on a large sensor. (a) The optimized
134 𝜇m × 1 𝜇m volumetric nanophotonic structure, represented as a binary heatmap
of 𝜀(r), with zoom-ins on two regions of the structure. There are 1296 design
degrees of freedom per 1 𝜇m2. In the final optimized structure, 𝜀(r) takes on binary
permittivities of only 1 and 12. (b) The measurement matrices 𝐺 (b) before and (c)
after optimization. (d) Evolution of the 𝑙1 (Lasso) and 𝑙2 (Tikhonov) regularization
coefficients over optimization. (e) Convergence of the reconstruction error during end-
to-end optimization. (f) Grayscale images formed from the ground truths in Fig. 3(g)
on the detector with 1% noise. (g) Ground truth signal of 10 angles × 3 frequencies
overlaid with reconstructed sparse signal from the image in Fig. 3(f). (h) Comparison
of inverse condition numbers and transmissions between optimized structure, random
structure, and thin lens. Red vertical lines indicate new training phases, increasing
binary filter strength on the structure with each new phase.

optimization allows us to solve these different classes of problems without any manual tuning of
the reconstruction algorithm. We also emphasize the application of the general overdetermined
problem for space squeezing, or imaging in systems with compact free space.

Here, 𝑥𝐷
𝑑

= 0.30 and the compression ratio is 34.5, same as in the previous example.

3.3. Three-dimensional monochromatic space squeezing

Our last example reconstruction problem is a 3D extension of the result in Section 3.2. Here,
like in the 2D space squeezing problem, the reconstruction problem is overdetermined. In this
scenario, we set our ground-truth object to be of only one frequency and 5 x-angles × 5 y-angles,
so the ground-truth vector 𝑢 is a length-25 vector. The angles here are spaced between −0.02
radians and 0.02 radians from normal incidence in both the 𝑥− and 𝑦− dimensions. Each detector
pixel is a square with side length 𝑥𝐷 = 2.24 𝜇𝑚. We set the sensor 𝑑 = 11.2 𝜇m from the
structure. We allow all 25 components of the ground-truth to be activated in the optimization.
We use an 11 × 11 sensor, which makes the overall sensor have size 24.6 𝜇m × 24.6 𝜇m, The
nanophotonic design region is of size 13.4 𝜇m × 13.4 𝜇m × 0.56 𝜇m (Fig. 4(a)), with 10648
design degrees of freedom per 1 𝜇m3. Here, we perform freeform optimization over voxels, as
opposed to alternative of optimizing 2D patterns.

Before optimization, we initialize the nanophotonic as a random structure, which forms
the measurement matrix shown in Fig. 4(b). After optimization, the measurement matrix
becomes the one shown in Fig. 4(c) and the nanophotonic design becomes the structure shown in



Fig. 4. 3D Imager. (a) Cross-sections of the optimized 13.4 𝜇m × 13.4 𝜇m × 0.56 𝜇m
volumetric nanophotonic structure atΔ𝑧 = 0.28 𝜇m from the surface of the nanophotonic
structure, with 10648 design degrees of freedom per 1 𝜇m3. In the final optimized
structure, 𝜀(r) takes on binary permittivities of only 1 and 12. (b, c) The measurement
matrices 𝐺 (b) before and (c) after optimization. (d) Point spread function measured
for the normal-incidence original signal. (e) Convergence of the reconstruction error
during end-to-end optimization. (f) Side-by-side examples of grayscale sensor image,
original signal, and reconstructed signal.

Fig. 4(a). Qualitatively, the optimized measurement matrix is more sparse, and different angles
are more focused on the sensor than in the initial measurement matrix, which serves to make the
optimized matrix better-conditioned. Quantitatively, the condition number of the measurement
matrix decreases from 902 to 221 over the optimization (Table 1). However, unlike in the 2D
reconstruction problems, the transmission slightly decreases here, likely a result of the limited
design space. We also show the point spread function for the optimized structure (Fig. 4(e)).
The intensity in the point spread function is localized in the top left corner. In the optimized
measurement matrix (Fig. 4(c)), the point spread function corresponds to the middle column, and
the high intensity can be seen at the top of the row. Three example reconstructions are shown in
Fig. 4(f); qualitatively the reconstructed signals generally faithfully capture the main features
of the original signals. Overall, the optimized system is benchmarked to have SSIM 0.95 and
RMSE 0.18 at 1% noise, a significant improvement over the system with a random structure
(SSIM 0.88, RMSE 0.33).

Lastly, this 3D structure achieves 𝑥𝐷
𝑑

= 0.20 and its compression ratio is 22.9, beyond the
realm of paraxial optics.

4. Discussion and outlook

Our central contribution is a flexible, noise-robust framework for transcending shift-invariance
while imaging in the paraxial regime. By designing a volumetric nanophotonic structure with
topology optimization for our optical element, we are no longer beholden to the shift-invariant
paraxial approximation. Compared to traditional lenses or conventional metasurfaces (relying on
the locally periodic approximation), we can keep the detector closer and the sensor resolution



Condition Number Transmission

2D thin lens, sparse 2.36×107 0.90

2D random structure, sparse 2431 0.21

2D optimized structure, sparse 1514 0.27

2D thin lens, space squeezing 1.65 × 1010 0.90

2D random structure, space squeezing 499 0.20

2D optimized structure, space squeezing 166 0.53

3D random structure, space squeezing 902 0.39

3D optimized structure, space squeezing 221 0.36

Table 1. Condition numbers and transmissions over various designs.

Compression Ratio Maximum Angle (radians) Wavelength Range (nm)

Reshef et al., metamaterial spaceplate 4.9 0.26 1550

Reshef et al., uniaxial spaceplate 1.12 0.61 visible light (400–700)

Guo et al., three-layer 144 0.01 dependent on design constant (single wavelength)

Guo et al., single-layer hexagonal 11.2 0.11 dependent on design constant (single wavelength)

Our work, 2D (sparse and space squeezing) 34.5 0.04 460–690

Our work, 3D (space squeezing) 22.9 0.02 550

Table 2. Comparison of our work with other space squeezing designs.

lower, which lets us keep the entire imaging system compact. We demonstrate that our method
significantly outperforms both a thin lens and a random scattering structure in paraxial imaging
with compression ratios of up to 34.5. In comparison, previous works have demonstrated
compression factors of up to 4.9 [18] and 144 [2]. The combination of computation and structure
design is the strength of our work, showing enhanced performance compared to lensless imaging
(computation only) or a photonic inverse-designed structure (photonics only). The addition
of a post processing step does not present a significant hurdle to real-life applications, given
the relative simplicity of our reconstruction algorithm (compared to state-of-the-art artificial
intelligence tasks implemented on centralized or edge computing platforms [38,39]). We note
that previous work in building spaceplates [2,18] results in a general optical element that directly
implements the transfer function of free space. On the other hand, our work builds an optical
element that is combined with a reconstruction algorithm to result in a compact imaging system.
Indeed, these two approaches are not in conflict with each other; future work could involve
using a spaceplate in conjunction with a freeform nanophotonic structure to further reduce the
free space required in the design. Other approaches in improving imaging resolution have been
proposed, including Fourier ptychography [40] and multi-aperture, folded-optics imaging [41].
Fourier ptyochgraphy focuses on the trade-off between resolution and field-of-view, whereas
we focus on the trade-off between resolution and free-space. Multi-aperture imaging addresses
the resolution to depth tradeoff as we do, but it focuses on building new designs for the camera
aperture and folding the imaging system to achieve a longer equivalent free space within the
same space envelope. On the other hand, we design a new optical element to replace the lens
component of a camera, not changing the aperture or folding the entire system.

We noted above in our examples (summarized in Table 1) that our optimization either preserves



or improves transmission by the nanophotonic structure. For instance, the two-dimensional
space squeezing optimization shows a 2.5x increase in transmission. This leads to a twofold
benefit—the improved reconstruction accuracy shows that the system becomes more noise-robust,
and the increase in transmission shows the system increases the signal-to-noise ratio.

Future work may build on our framework by innovating on either the nanophotonic design
or reconstruction algorithm. The choice of freeform nanophotonics opens our design to
many more possibilities than prior works with locally-periodic metasurfaces, but there is a
tradeoff in computational cost. For instance, to optimize a freeform nanophotonic structure in
three dimensions (Section 3.3), we had to significantly reduce our problem size. With more
computational power or more efficient design choices, the nanophotonic design could be scaled
up to explore richer physics and higher-resolution imaging. For instance, this could be done
with Flexcompute or by imposing an axisymmetric structure to reduce computational costs [42].
Innovations on the reconstruction algorithm may include replacing our elastic-net reconstruction
with more general algorithms, such as neural networks. To push the transmission of our inverse-
designed structures closer to that of a real lens, future work may focus on performing end-to-end
optimization with transmission encoded as part of the loss function, for instance adding in a term
to the loss function to penalize low transmission. This work would be important for improving
the transmission of optimized structures to allow them to be considered for real applications.

To experimentally realize our designs, there are additional fabrication constraints to account
for during topology optimization, such as minimum length scales and connectivity [43, 44].
We do not presently account for these constraints in this proof-of-concept work. Our work
is theoretical in nature, but we note that existing volumetric fabrication technologies (such as
implosion fabrication) would make an experimental demonstration of our method possible in
the near future [45, 46]. Additionally, we could modify our optimization method to account for
already-demonstated nanofabrication techniques, such as multilayer metasurfaces [47–49].

Looking forward, we anticipate a growing demand for compact imaging. Our end-to-end
framework coupled with freeform nanophotonics paves the way for the design of optical elements
that can perform high-resolution imaging with limited volume. In particular, we present our
method as a more general alternative to optics-only space squeezers. It is our hope that the
application of end-to-end design to compact imaging will allow for smaller, higher-resolution
cameras.
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